Extracting Software Product Lines: A Case Study Using Conditional Compilation

Marcus Vinicius Couto
Institute of Informatics, PUC Minas
Belo Horizonte, Brazil
marcusvnac @ gmail.com

Abstract—Software Product Line (SPL) is a development
paradigm that targets the creation of variable software
systems. Despite the increasing interest in product lines,
research in the area usually relies on small systems im-
plemented in the laboratories of the authors involved in
the investigative work. This characteristic hampers broader
conclusions about industry-strength product lines. Therefore,
in order to address the unavailability of public and realistic
product lines, this paper describes an experiment involving
the extraction of a SPL for ArgoUML, an open source
tool widely used for designing systems in UML. Using
conditional compilation we have extracted eight complex and
relevant features from ArgoUML, resulting in a product line
called ArgoUML-SPL. By making the extracted SPL publicly
available, we hope it can be used to evaluate the various
flavors of techniques, tools, and languages that have been
proposed to implement product lines. Moreover, we have
characterized the implementation of the features considered
in our experiment relying on a set of product-line specific
metrics. Using the results of this characterization, it was
possible to shed light on the major challenges involved in
extracting features from real-world systems.

Keywords-software product lines; conditional compilation;
refactoring.

I. INTRODUCTION

Software Product Line (SPL) is an emerging paradigm
to create variable software systems [1], [2]. The ultimate
goal is to move from a one-at-a-time software imple-
mentation culture to a new scenario where systems are
systematically derived from a managed set of software
assets. Typically, SPLs are composed by core components
— shared by all products — and components responsible for
implementing features that are required only in particular
domains or market segments.

The basic principles of software product lines have
been proposed in the last decade (or even before, since
in essence they just reinforce well-known software reuse
principles [3]). However, specially from the source code
viewpoint, we still miss the application of product-line
principles in medium to large software systems. Particu-
larly, research in SPL usually relies on small systems im-
plemented in laboratories by the research group involved
in the target investigative work. As an example, we can
mention SPLs such as Expression Product Line [4], Graph
Product Line [5], and Mobile Media Product Line [6].
Clearly, SPLs synthesized in research labs are useful to
promote the basic principles of this software development
approach. In addition, they facilitate the investigation
of novel techniques, tools, and languages supporting a

Marco Tulio Valente, Eduardo Figueiredo
Department of Computer Science, UFMG
Belo Horizonte, Brazil
{mtov,figueiredo} @dcc.ufimg.br

product-line based view of software development. On
the other hand, it is well-known that there are funda-
mental differences between engineering small systems
(programming-in-the-small) and engineering complex sys-
tems, composed by hundreds of modules (programming-
in-the-large) [7], [8]. Therefore, since SPL targets reuse-
in-the-large, it is essential to investigate whether recent
research results in this area can be extrapolated to real
and complex software systems.

In order to address the unavailability of public and
realistic product lines, this paper describes an experiment
involving the extraction of a SPL from ArgoUML, a
Java-based open source tool widely used for designing
systems in UML. Therefore, instead of generating a SPL
from a small system fully conceived and implemented
in a research lab, we decided to extract features from a
real-world, mature, and complex software system. In our
experiment, the code responsible for the implementation
of eight features from ArgoUML has been annotated using
conditional compilation directives, resulting in a product
line called ArgoUML-SPL.

The following optional features are part of the ex-
tracted ArgoUML-SPL: ACTIVITY DIAGRAM, STATE DI-
AGRAM, COLLABORATION DIAGRAM, SEQUENCE DIA-
GRAM, USE CASE DIAGRAM, DEPLOYMENT DIAGRAM,
LOGGING, and COGNITIVE SUPPORT. Essentially, such
features have been selected because they represent relevant
functional requirements (as in the case of the extracted
UML diagrams) or classical non-functional requirements
(as in the case of LOGGING). Also, some of the selected
features, such as LOGGING and COGNITIVE SUPPORT,
have a crosscutting behavior.

ArgoUML’s original implementation has about 120
KLOC. From those lines, we have annotated about 37
KLOC as responsible for the implementation of at least
one of the aforementioned features. To the best of our
knowledge, such numbers make ArgoUML-SPL more
complex and larger than any public product line pre-
viously reported in the literature. Finally, we present a
detailed quantitative evaluation and characterization of the
extracted SPL. For example, we provide information about
size, crosscutting behavior, granularity, and static location
of the features extracted in our study.

To summarize, our contributions are twofold. First,
using conditional compilation we have extracted a SPL
including eight complex and relevant features from a
mature UML modeling tool. By making the extracted SPL



cmp ArgoUML Architecture

E + antlr
g] +GEF

+.JRE & UHils
+ Logging

Top Level

ﬂ + Application

|
View and Control

E + Reverse Engineering
#

E + Code Generation
g + Critics

E + Diagrams

E + Explorer Panel
E + Module Loader
E + Notation

E + Property Panel

|
Low Level

E + Configuration

ﬂ + Internationalization
ﬂ + Swing extensions
E + TaskManagement

+ Swidgets
+ Toolbar

&l
&l
] +ocL
&l
&l

Figure 1. ArgoUML Architecture

publicly available, we hope it can be used to evaluate the
various flavors of techniques, tools, and languages that
have been proposed to implement product lines. Second,
we have characterized the implementation of the features
considered in our experiment. Using the results of this
characterization, it was possible to shed light on the major
challenges involved in extracting features from real-world
systems.

The remainder of this paper is organized as follows.
The next section shows an overview about the proposed
product line. In this section, we show a basic architecture
of this system, the implemented feature model and the
extraction process that guided the creation of the proposed
software product line. Section III presents the results of a
quantitative analysis of the extracted features based in a set
of metrics. Section IV discusses how the extracted features
can be classified according to some patterns usually found
in the literature. This section also shows some challenges
and problems that could be faced in the possible separation
of features with aspect technology. Finally, Section V
discusses related work and Section VI concludes the paper
and points out directions for future work.

II. ARGOUML-SPL

This section provides an overview about the ArgoUML
architecture. It also describes the feature model proposed
for ArgoUML-SPL. Finally, we report our effort on man-
ually inserting pre-processor directives in the source code,
in order to delimit the ArgoUML-SPL features.

A. Architecture

Figure 1 illustrates the ArgoUML architecture, high-
lighting the following subsystems [9]:

o External: third-party libraries such as the Graph Edit-
ing Framework (GEF) and libraries for handling OCL
constraints.

o Low-level: subsystems that are responsible for low-
level tasks such as configuration, internationalization,
task management etc.

o View and Control: these subsystems are responsible
for tasks like diagram management, GUI, code gen-
eration, and reverse engineering.

o Top-Level: subsystem that initializes the other
subsystems.

B. Feature Model

Figure 2 presents the feature model of the extracted
SPL. For creating ArgoUML-SPL, eight features repre-
senting functional and nonfunctional requirements have
been selected. The first feature — LOGGING — has been
selected as a representative of a non-functional require-
ment. The other seven features represent functional con-
cerns: ACTIVITY DIAGRAM, STATE DIAGRAM, COLLAB-
ORATION DIAGRAM, SEQUENCE DIAGRAM, USE CASE
DIAGRAM, DEPLOYMENT DIAGRAM, and COGNITIVE
SUPPORT.

The COGNITIVE SUPPORT feature provides information
that helps designers to detect and to solve problems in
their models [10]. This feature is implemented by
software agents that run continuously in a background
thread of control. Such agents analyze the diagrams
created by end-users and indicate potential problems.
For example, they can recommend well-known design
practices, remind about parts of the project that
have not been finalized or warn about syntax errors.
Finally, ACTIVITY DIAGRAM, STATE DIAGRAM,



COLLABORATION DIAGRAM, SEQUENCE DIAGRAM,
USE CASE DIAGRAM, and DEPLOYMENT DIAGRAM
provide support to the respective UML diagrams.

ArgoUML-SPL

Cognitive

Diagrams Suport

O
Logging

Use Case Collaboration Deployment Sequence

Class “ State

‘ Activity ‘

Figure 2. ArgoUML-SPL Feature Model

Rationale: Two main criteria have guided the selection
of the mentioned features: relevance and implementa-
tion complexity. Regarding relevance, we have decided
to extract only features that represent typical functional
requirements in the domain of UML modeling tools (as
the six UML diagrams), a feature that represent a classical
non-functional requirement (LOGGING) and a feature pre-
senting an unquestionable optional behavior (COGNITIVE
SUPPORT).

With respect to the complexity criterion, the imple-
mentation of each selected feature requires a consider-
able amount of code not confined in a single class or
package. For example, the implementation of LOGGING
and COGNITIVE SUPPORT has a crosscutting behavior,
impacting several classes of the system. Finally, two
situations are rather common in the implementation of the
features representing diagrams: tangling (when a block of
code, usually a single statement or expression, includes
code associated with more than one feature) and nesting
(when a block of code associated with a given feature is
lexically nested in an external block of code, associated
with another feature).

We should mention that ArgoUML-SPL includes only
optional and mandatory features (i.e. it does not provide
support to alternative features, for example). Furthermore,
there are no semantic dependencies between the extracted
features. In other words, any possible configuration — with
any feature enabled or disabled — is valid. However, these
limitations do not represent a threat on the validity of using
ArgoUML-SPL to assess SPL implementation techniques.
The reason is that eventual dependencies between two
features A and B - including or, xor, or requires
dependencies — do not impact in the annotation of the
A and B code (i.e. the code of both features must be
annotated anyway). In fact, conditional compilation based
approaches consider dependencies between A and B only
at product derivation time in order to prevent the genera-
tion of invalid products.

C. Extraction Process

In the extracted SPL, preprocessor directives have been
used to delimit the optional code associated to each
feature. It is well known that preprocessors pollute the

I Y N

code with annotations, making the program less readable
and harder to understand, maintain and evolve [11]-[13].
However, preprocessors have some advantages too, includ-
ing expressiveness, since they support the annotation of
any piece of code. In other words, preprocessors constitute
the most primitive and at the same type the most powerful
technology for annotating feature code. Therefore, by
using preprocessors in the ArgoUML-SPL extraction, our
main intention is to provide a product line that can be used
to evaluate other modularization and separation of concern
technologies, such as aspect-oriented programming [14],
feature-oriented programming [15], and disciplined anno-
tations [13].

Since Java does not provide native support to preproces-
sor directives, we relied on a third-party preprocessor tool
— called javapp! — to annotate the feature code. This
tool supports preprocessor directives similar to the ones
that exist in C/C++, including #ifdef, #ifndef, and
#else. Basically, these directives indicate to the prepro-
cessor whether the code fragment they delimit should be
passed to the compiler or not. In this way, it is possible
to generate particular products from the SPL without the
optional features indicated by SPL developers.

Figure 3 presents an example of code delimited by
preprocessor directives. In this figure, the statement in
line 3 has been annotated as associated to COGNITIVE
SUPPORT. Therefore, the assignment will only be included
in products with this feature enabled. On the other hand,
the assignment in line 5 will only be included in products
with COGNITIVE SUPPORT disabled.

JPanel todoPanel;
//#if COGNITIVE
todoPanel = new ToDoPane(splash);

//#else

todoPanel = new JPanel ();

//#endif

Figure 3. Feature code delimited by conditional compilation directives

To automate the generation of the products that can be
derived from ArgoUML-SPL, we have implemented a set
of ant? scripts. Basically, these scripts allow developers
to inform the features that should be activated in a par-
ticular product. After that, the scripts call the javapp
preprocessor and the Java compiler, in order to generate
the requested product.

III. CHARACTERIZATION OF THE EXTRACTED SPL

In order to reason about the extracted SPL, we have used
— and adapted — a recent metrics suite proposed to evaluate
SPL implementations based on preprocessors [16]. Basi-
cally, four sets of metrics have been collected: size metrics,
crosscutting metrics, granularity metrics, and localization
metrics. These metrics - and their related values - are
detailed in the next subsections.

! Available at http://www.slashdev.ca/javapp.
2 Available at http:/ant.apache.org.



A. Size Metrics

These metrics are designed to evaluate the size of
the products and features of a SPL implemented using
conditional compilation. More specifically, we collected
the following size metrics:

e Lines of Code (LOC): counts the number of lines
of code — without comments and blank lines — for a
given product P generated by the SPL;

o Number of Packages (NOP): counts the number of
packages present in a given product P;

e Number of Classes (NOC): counts the number of
classes present in a given product P;

o Lines of Feature Code (LOF): proposed by Liebig
et al. [16], this metric counts the number of lines
of code — without comments and blank lines —
responsible for the implementation of a given
feature F'. Essentially, LOF(F) = LOC(All) —
LOC(All — F), where All denotes the product with
all the features from the SPL enabled; All — F
denotes the product with all the features enabled,
except F.

Tables I and II present the values for the size metrics for
products and features, respectively. Table II also presents
the percentage of the code dedicated to each feature
(regarding the original, non-SPL based version of the
system).

Table 1
S1ZE METRICS FOR PRODUCTS

Product LOC NOP NOC

Original, non-SPL based 120,348 81 1,666
Only COGNITIVE SUPPORT disabled 104,029 73 1,451
Only ACTIVITY DIAGRAM disabled 118,066 79 1,648
Only STATE DIAGRAM disabled 116,431 81 1,631
Only COLLAB. DIAGRAM disabled 118,769 79 1,647
Only SEQUENCE DIAGRAM disabled 114,969 77 1,608
Only USE CASE DIAGRAM disabled 117,636 78 1,625
Only DEPLOY. DIAGRAM disabled 117,201 79 1,633
Only LOGGING disabled 118,189 81 1,666
All the features disabled 82,924 55 1,243

Table II
SIZE METRIC FOR FEATURES

Feature LOF
COGNITIVE SUPPORT 16,319  13.56%
ACTIVITY DIAGRAM 2,282 1.90%
STATE DIAGRAM 3,917 3.25%
COLLABORATION DIAGRAM 1,579 1.31%
SEQUENCE DIAGRAM 5,379 4.47%
USE CASE DIAGRAM 2,712 2.25%
DEPLOYMENT DIAGRAM 3,147 2.61%
LOGGING 2,159 1.79%
Total 37,424 31.10%

Analysis of Size: As shown in Table I, the original version
of the system — with all the features enabled — has 120,348

LOC. On the other hand, the minimal product that can
be derived from the extracted SPL — with all the features
disabled — has 82,924 LOC (therefore, 31% smaller). This
reduction shows the benefits in terms of customization that
can be achieved when moving to a SPL-based approach
to software development. That is, instead of a one-size-
fits-all approach, the extracted product line allows users
to tailor the system size to their real needs. Table I also
shows that LOGGING is the only feature whose removal
does not affect the number of classes and packages of the
system. This property is due to the fact that ArecoUML
relies on an external library called Log4J? for LOGGING.

As shown in Table II, COGNITIVE SUPPORT is the
feature with the highest LOF (13.56% of the lines of
the system are dedicated to implement this feature). The
simplest diagram — at least in terms of size — is COL-
LABORATION DIAGRAM (1,579 LOC). On the other hand,
SEQUENCE DIAGRAM is the diagram with the highest
LOF (5,379 LOC). Table II also shows that the number
of lines of code dedicated to LOGGING (2,159 LOC) is
close to the lines dedicated to diagrams like ACTIVITY
DIAGRAM (2,282 LOC) and USE CASE DIAGRAM (2,712
LOC). Such numbers suggest the importance of consider-
ing LOGGING as a feature in ArgoUML-SPL.

The features extracted in our experiment represent a
total of 37,424 LOC (31.1% of the original version of
ArgoUML). In other words, the core of the extracted SPL
corresponds to around 69% of the system size, in terms
of lines of code. Basically, the classes in the core are
responsible for user interface and for rendering diagrams
in the screen (around 38% of the system size) and for
several other features, such as persistence, international-
ization, code generation, reverse engineering etc.

B. Crosscutting Metrics

These metrics are designed to measure the crosscutting
behavior of the features extracted in preprocessor based
SPLs. More specifically, we collected the following
metrics:

o Scattering Degree (SD): proposed by Liebig
et al. [16], this metric counts the number of
occurrences of the #ifdef constants that define
a given feature F. That is, given a constant
that defines a particular feature, SD counts the
number of occurrences of this constant in #ifdef
expressions. To illustrate, suppose the code fragment
presented on Figure 4. In this example, the constant
STATEDIAGRAM designates the code associated to
the STATE DIAGRAM feature. Therefore, SD(STATE
DIAGRAM)= 4, since the mentioned constant appears
in four #1ifdef expressions (lines 1, 4, 8, and 22).

o Tangling Degree (TD): for each pair of features F}
and F5, our original definition for this metric counts

the number of #ifdef expressions where F} and

3 Available at http://logging.apache.org/log4j/



1
2

18
19
20
21
22
23
24

F, are combined by AND or OR operators. In the
example of Figure 4, TD(ACTIVITY DIAGRAM,
STATE DIAGRAM) = 3 because there is an #ifdef
in which the two features are combined by an AND
operator (line 8) and two #ifdefs in which the
features are combined by an OR operator (lines
1 and 22). The goal of this metric is to measure
interactions and dependencies between the features
extracted in a preprocessor-based SPL.

//#if STATEDIAGRAM or ACTIVITYDIAGRAM
if ((

//#if STATEDIAGRAM
type == DiagramType. State
//#endif

//#if STATEDIAGRAM and ACTIVITYDIAGRAM

I
//#endif

//#if ACTIVITYDIAGRAM
type == DiagramType. Activity
//#endif

) && machine == null) {

diagram = createDiagram (...) ;
} else {
//#endif
diagram = createDiagram (...) ;
//#if STATEDIAGRAM or ACTIVITYDIAGRAM
}
//#endif

Figure 4. Example of feature scattering and tangling
Tables III and IV show the values collected for the SD
and TD metrics, respectively.

Table IIT
SCATTERING DEGREE (SD)

Feature SD LOF/SD
COGNITIVE SUPPORT 319 51.16
ACTIVITY DIAGRAM 136 16.78
STATE DIAGRAM 167 23.46
COLLABORATION DIAGRAM 89 17.74
SEQUENCE DIAGRAM 109 49.35
USE CASE DIAGRAM 74 36.65
DEPLOYMENT DIAGRAM 64 49.17
LOGGING 1287 1.68
Table 1V
TANGLING DEGREE (TD)
Pairs of Features TD
(STATE DIAGRAM, ACTIVITY DIAGRAM) 66
(SEQUENCE DIAGRAM, COLLABORATION DIAGRAM) 25
(COGNITIVE SUPPORT, SEQUENCE DIAGRAM) 1
(COGNITIVE SUPPORT, DEPLOYMENT DIAGRAM) 13

Crosscutting Behavior Analysis: Table III shows that LOG-
GING presents the highest SD value. According to the data

presented on this table, there are 1,287 static locations
in the system where LOGGING is required. Therefore,
this value confirms the recurrent claims in the literature
about the crosscutting behavior of LOGGING. However,
as presented in Table II, LOGGING has the second lowest
value for LOF among the features considered in this study.
That is, LOGGING is used in 1,287 parts of the system,
but it requires few lines of code in each of these points
(on overage, 1.68 lines of code on each location where
it is demanded). On the other hand, there are features
like DEPLOYMENT DIAGRAM that are required in only
64 locations of the system, but that demand much more
code at each location (on average, 49.17 lines of code on
each location).

Regarding the TD metric, there are tangling relations
between four pairs of features, as presented in Table IV
(for the combination of features not presented in this table,
TD=0). Tangling relations have been detected between
similar UML diagrams, particularly between STATE DIA-
GRAM and ACTIVITY DIAGRAM and between SEQUENCE
DIAGRAM and COLLABORATION DIAGRAM. Since such
diagrams are similar, tangling denotes code fragments that
must be included when both diagrams are enabled (AND
operator) or when at least one the diagrams is enabled
(OR operator). There is also tangling relations between
COGNITIVE SUPPORT and two diagrams: SEQUENCE
DIAGRAM and DEPLOYMENT DIAGRAM. In this case,
tangling is used to denote classes that provide cognitive
support specifically to the mentioned diagrams.

Among the features annotated in the study, LOGGING
is the one that appears most often lexically nested in
blocks of code associated to other features. Indeed, we
have found that LOGGING appears nested to all the
other features considered in the study. This property
of LOGGING can be explained due to its crosscutting
behavior (as measured by the SD metric). In other
words, LOGGING is a non-functional requirement
whose implementation crosscuts most of the functional
requirements of a system. Finally, we found eleven static
locations where ACTIVITY DIAGRAM is lexically nested
in STATE DIAGRAM. By inspecting the code, we have
observed that this nesting is due to the fact that ACTIVITY
DIAGRAM is a specialization of STATE DIAGRAMS, as
defined by the UML specification [17].

C. Granularity Metrics

Granularity metrics quantify the hierarchical level of the
program elements annotated for a specific feature. These
metrics are able to identify granularity levels ranging from
coarse to fine-grained features. By our definition, a feature
has coarse granularity when its implementation occurs
mainly in syntactic units with a higher hierarchical level
according to the Java grammar, such as packages, classes
and interfaces. On the other hand, a feature is fine-grained
when its code is composed by lower level syntactic units,
such as statements and expressions [18]. The metrics used
in our study to measure granularity are:



Table V
COARSE-GRAINED GRANULARITY METRICS

Feature Package Class InterfaceMethod Method  MethodBody
COGNITIVE SUPPORT 11 9 1 10 5
ACTIVITY DIAGRAM 2 31 0 6 6
STATE DIAGRAM 0 48 0 15 2
COLLABORATION DIAGRAM 2 8 0 5 3
SEQUENCE DIAGRAM 4 5 0 1 3
USE CASE DIAGRAM 3 1 0 1 0
DEPLOYMENT DIAGRAM 2 14 0 0 0
LOGGING 0 0 0 3 15

Table VI
FINE-GRAINED GRANULARITY METRICS
Feature ClassSignature  Statement  Attribute  Expression
COGNITIVE SUPPORT 2 49 3 2
ACTIVITY DIAGRAM 0 59 2 6
STATE DIAGRAM 0 22 2 5
COLLABORATION DIAGRAM 0 40 1 1
SEQUENCE DIAGRAM 0 31 2 3
USE CASE DIAGRAM 0 22 1 0
DEPLOYMENT DIAGRAM 2 13 1 3
LOGGING 0 789 241 1

e Package: quantifies packages entirely annotated (all
classes and interfaces) as implementing a feature.

e Class: quantifies classes or interfaces entirely an-
notated as implementing a feature.

e ClassSignature: counts pieces of annotated code
associated to class signatures, i.e. extends and
implements clauses.

¢ InterfaceMethod: counts method signatures in a
Java interface annotated to implement a feature.

e Method: counts methods entirely annotated to im-
plement a feature (i.e. signature and body).

e MethodBody: counts methods whose body (but not
the signature) has been annotated to implement a
feature.

e Attribute: counts the number of class and in-
stance attributes annotated to implement a particular
feature.

e Statement: counts the number of statements anno-
tated to implement a feature, including method calls,
assignments, conditional statements, loop statements
etc.

e Expression: counts the number of expressions
annotated to implement a particular feature (e.g. the
expression of an if or loop statement).

The granularity metrics do not take into account ele-
ments that have already been counted in another metric.
For instance, the Class metric does not consider a class
or interface belonging to a fully annotated package (i.e. a
package counted by the Package metric). We make this
decision to avoid double counting a specific element.

In this paper, we assume the following categories for
coarse and fine-grained syntactic elements:

o Coarse-grained: Package, Class, MethodBody,

Method and InterfaceMethod.
o Fine-grained: ClassSignature, Attribute,
Statement, and Expression.

Granularity Analysis: Tables V and VI show the values
for the proposed coarse and fine-grained granularity
metrics, respectively. Two main findings can be taken
from them:

o The implementation of COGNITIVE SUPPORT,
ACTIVITY DIAGRAM and STATE DIAGRAM has
more coarse-grained elements than the other features.
Basically, part of the code of such features is properly
modularized by elements such as packages, classes,
and interfaces. However, such coarse-grained
components are referenced by other elements of
smaller granularity. In summary, the implementation
of the aforementioned features is well modularized,
but its use is spread in the rest of the code.

o« LOGGING is a fine-grained feature that demands
789 statements and 241 attributes. However, the
implementation of LOGGING is not modularized at
all. In fact, the mentioned statements are scattered
all over the ArgoUML-SPL code.

D. Localization Metrics

These metrics provide information on the static location
of the syntactic elements annotated for the ArgoUML-
SPL features. These metrics have been calculated only for
elements of Statement granularity. The goal is to show
the localization of the statements that have been associated
to each feature, e.g. whether they occur statically at the
beginning or at the end of a method body. We have



Table VII
LOCALIZATION METRICS

Feature StartMethod  EndMethod  BeforeReturn  NestedStatement
COGNITIVE SUPPORT 3 5 0 10
ACTIVITY DIAGRAM 2 20 2 19
STATE DIAGRAM 2 19 3 12
COLLABORATION DIAGRAM 1 10 3 3
SEQUENCE DIAGRAM 0 9 3 7
USE CASE DIAGRAM 0 2 0 1
DEPLOYMENT DIAGRAM 0 0 0 3
LOGGING 127 21 89 336

defined these metrics inspired by the join point model
found in aspect-oriented programming languages, such as
Aspect] [19].

The localization metrics are defined as follows:

e StartMethod: counts the statements annotated for
a particular feature that appear at the beginning of a
method.

e EndMethod: counts the statements annotated for a
particular feature that appear at the end of a method.

e BeforeReturn: counts the statements annotated
for a particular feature that appear immediately before
a return statement.

e NestedStatememt: counts the statements
annotated for a particular feature that appear nested
in the scope of a non-annotated and more external
statement.

Table VII shows the values measured for the localization
metrics.

Analysis of Localization: Among the four considered
localizations, those that can be directly implemented by
the join point model of Aspect] are: StartMethod,
EndMethod, and BeforeReturn. However, for LOG-
GING - the typical crosscutting feature analyzed in this
study — these three types of locations occurred less
frequently for example than NestedCommand. In fact,
NestedCommand in LOGGING is at least twice more
frequent than the other locations. This result is interesting
because crosscutting features may naturally emerge as
candidate for aspectization. However, the physical mod-
ularization of code nested in external statements is more
challenging, requiring, for instance, refactoring of the
object-oriented code [20]-[22].

IV. DISCUSSION

This section presents and discusses some results that
can be drawn from our study and compares these results
to other studies published in the related literature. In
particular, the following subsections discuss: (IV-A) some
crosscutting patterns found in ArgoUML-SPL and how
harmful those patterns seem to be and (IV-B) the feasi-
bility of using aspect-oriented development techniques to
extract the eight optional features of ArgoUML-SPL.

A. Recurrent Forms of Features

Recent work has shown that not all manifestations of
crosscutting features are harmful to quality attributes of
the system, such as modularity and stability [23]-[25]. It is
therefore important to study and identify the features that
present the most harmful crosscutting patterns. The results
presented in Section III help us to identify three recurrent
patterns of crosscutting features already documented in
the literature [23], [25]: God Concern, Black Sheep and
Octopus.

God Concern occurs when a feature requires a signifi-
cant fraction of the system code in its implementation [25].
This type of feature was inspired by the definition of God
Class by Fowler [25]. That is, as in God Class, elements
that implement a God Concern feature hold too much
responsibility of the software system. According to data
presented by Tables II, V and VI we can observe that
COGNITIVE SUPPORT has the pattern defined by God
Concern. That is, this feature implementation involves a
lot of the system functionality such as, for instance, 11
entire packages and 9 classes in other packages (Table V).
Moreover, 16,319 lines of the system code (13.56%)
are used to implement COGNITIVE SUPPORT (Table II).
Fortunately, recent studies have shown little correlation
between God Concern features with issues of modularity
and stability [25].

Black Sheep is a crosscutting pattern which has the
opposite definition of God Concern. This pattern defines
a crosscutting feature that is implemented by some pieces
of code spread across different classes of the system
system [23]. The Black Sheep feature does not hold much
responsibility and, therefore, it can be removed without
drastic impact the system core functionality. For example,
Black Sheep occurs when no class has the only purpose
of implementing a feature. The feature is instead scattered
in small parts across the system structure, such as in
statements and expressions. The LOGGING feature follows
the Black Sheep pattern in ArgoUML-SPL because no
class is completely dedicated to the implementation of this
feature (Table V). This feature also spreads over certain
methods and method bodies (Table V). However, most
of the feature code implements fine-grained elements,
such as statements, attributes, and expressions (Table VI).
Software engineers should be aware of a feature that
manifests itself as Black Sheep because studies have
shown a moderate to high correlation between this type



of feature and system stability [25].

Unlike God Concern and Black Sheep, the Octopus
crosscutting pattern is defined by a feature that is partially
modularized into one or more classes [23]. Although it
is modularized in some classes, the Octopus feature also
spreads over several other classes of the system. Therefore,
we can identify two types of classes in this crosscutting
pattern: (i) classes that are completely dedicated to the
implementation of the feature representing the octopus
body and (ii) classes that use only small parts of its code
to implement the feature, representing the fentacles of the
octopus. Based on this definition and on the data presented
by the metrics discussed in Section III, we observe that
the implementation of all six diagrams — State, Activity,
Collaboration, Sequence, Use Case, and Deployment —
follows the Octopus shape. That is, for all diagrams, we
can identify classes either completely dedicated to the
feature implementation (body) or using just a few of their
methods to implement the feature (tentacles). Similar to
Black Sheep, features that fit the Octopus pattern show
moderate to high correlation with design stability [25].
Therefore, these features must be carefully evaluated by
the software engineers and refactoring techniques may be
applied to improve their modularity.

B. Is it Feasible to Modularize into Aspects?

The set of metrics presented in Section III provides
us with important data to assess the possibility of refac-
toring selected features using aspect technology. That is,
a detailed analysis of the information provided by the
tables presented in that section allows us to evaluate which
features are good candidates to this kind of refactoring.

For instance, according to Table V, COGNITIVE SUP-
PORT is the best modularized feature in ArgoUML-SPL.
That is, its implementation is focused on some packages
and specific classes of the system. However, according
to the data in Table VI, this feature also uses many
fine-grained elements in its implementation, only behind
LOGGING and ACTIVITY DIAGRAM. Therefore, although
COGNITIVE SUPPORT is partially modularized, it also
offers opportunity for the use of aspects.

Compared to COGNITIVE SUPPORT, the STATE DI-
AGRAM, ACTIVITY DIAGRAM, SEQUENCE DIAGRAM,
and COLLABORATION DIAGRAM features have an extra
complexity to be refactored into aspects due to the tangled
nature of their implementation, as can be seen in Table IV
(TD metric).

LOGGING is often cited in the literature as a feature
that has characteristics that make it a good candidate
for refactoring by means of aspects [19], [26]. In our
work as can be seen in Table VII, this feature showed
the highest absolute number of code fragments which
favors the use of aspects join points. However, in relative
terms, this number is still small in comparison to the
total number of statements that implement this feature
(30%). Moreover, in a manual investigation, we found
out that messages that are recorded by logging calls are
different from each other in 84.5% of the cases. Therefore,

it would require an extensive use of different aspects for
each different message. In other words, if implemented
using aspects, the feature certainly would require a low
degree of quantification [27], [28].

Given this scenario, we can preliminarily state that it
may not be worth to refactor any of the features using
a technology for physical modularization of crosscutting
concerns, such as aspects.

V. RELATED WORK

The extraction of ArgoUML-SPL was motivated by
the fact that research in the area of product lines is
usually based on demonstration systems built in labora-
tories. For example, three product lines are often used in
such research: Expression Product Line (EPL) [4], Graph
Product Line (GPL) [5], and Mobile Media Product Line
(MMPL) [6]. The EPL consists of an expression gram-
mar with the following variabilities: data types (literals),
operators (negation, addition etc.) and operations (print
and evaluation). The EPL version implemented in Java
has about 2 KLOC. GPL is a product line in the area
of graph whose variabilities include edges (directed or
undirected, weighted or not etc), search methods (DFS or
BFS) and some classical graph algorithms (cycle checking,
shortest path, minimum spanning tree etc). Similar to EPL,
the GPL has also only 2 KLOC. Finally, MMPL is a
family of products for mobile devices, whose goal is to
implement applications for management of multimedia
files, including photos, video, and music. Besides the
type of media, MMPL includes other variabilities, such
as transferring documents via SMS and file management
operations (creation, removal, viewing etc). MMPL has
about 3.5 KLOC.

Aiming to evaluate the application of Aspect] to imple-
ment variability in product lines, Kastner, Apel and Batory
extracted several features of a database manager called
Berkeley DB (a system of 84 KLOC) [29]. Initially, they
identified a total of 38 features in that system, including
features related to persistence, transactions, caching, log-
ging, statistics, thread synchronization etc. However, due
to technical limitations of Aspect], they failed to refactor
some features with coarse-grained granularity, such as
the database persistence system. The extracted features
correspond to about 10% of the size of the system. Thus,
since it involves a real, medium to large sized system,
Berkeley DB is considered to be closest of our goals when
we decide to refactor the ArgoUML.

However, the experiments with Berkeley DB and Ar-
goUML have some important differences: (a) in our
experience, we could annotated all features originally
proposed, including those with higher granularity (such
as UML diagrams), (b) in our experience, the total amont
of refactored code was much higher (about 37 KLOC, or
31.1% of the total system size, against 8 KLOC, or 10%
of the system’s size, in the case of Berkeley DB), and
(c) the ArgoUML-SPL is publicly available to facilitate
and encourage its use by the community of researchers in
product lines. Last but not least, the two product lines



(ArgoUML-SPL and Berkley DB) are complementary
because they offer researchers the opportunity to explore
two approaches in two heterogeneous systems and thus
allow the generalization of experimental results.

Recently, Liebig et al. conducted an extensive study
aimed at evaluating how preprocessor directives are ef-
fectively used to implement variabilities [16]. Their work
involved the analysis of forty systems (with sizes ranging
from 10 KLOC to a 1 MLOC), all implemented in C.
However, such systems have not been refactored. There-
fore, the variabilities being considered include basically
very low features, usually selected through command line
parameters (e.g. debugging, optimization, or portability
options in the case of compilers). Moreover, in our work,
instead of analyzing low-level features of several legacy
systems, we chose to analyze higher level features of a
single up-to-date system (ArgoUML). This system was
properly refactored to allow the generation of various
products. Finally, we use several metrics to evaluate the
extraction of ArgoUML-SPL - including metrics such as
LOF and SD used in the Liebig’s work.

Annually, the International Software Product Line Con-
ference (SPLC) chooses examples of successful practi-
cal implementation of the product line principles. These
examples become part of the Product-Line Hall of
Fame [30]. However, these cases do not necessarily imply
the physical separation or the annotation of the code
responsible for implementing features. That is, in some
product lines listed in the Hall of Fame, the reuse occurs
only in terms of software architecture, development pro-
cess, execution platforms, and common components [31].
Furthermore, the award-winning product lines are usually
commercial systems which are not publicly available for
conducting research.

VI. CONCLUSIONS

We have described an experience involving the
extraction of eight complex features from a real software
system (ArgoUML) in order to generate a software
product line (that we called ArgoUML-SPL). The main
contributions of our work are the following:

o The extraction of a SPL from a real and complex
system. The version of ArgoUML used in this work
has about 120 KLOC and we have annotated around
37 KLOC using conditional compilation directives.
Clearly, such numbers distinguish ArgoUML from
systems normally used to evaluate SPL-based
techniques, languages, and properties. In fact, to
the best of our knowledge, the amount of code
refactored to create ArgoUML-SPL is the largest
among all other systems evaluated on product line
research.

o We have made ArgoUML-SPL source code publicly
available as a subproject at the main ArgoUML web
site: http://argouml-spl.tigris.org. Our
intention is to promote the use of ArgoUML-SPL

among researchers and practitioners interested on
product line related topics.

« We have proposed a framework for the evaluation
and characterization of pre-processor-based product
lines. This framework has been inspired by a set of
metrics originally proposed by Liebig et al. [16].
However, we have extended this framework with
new metrics, such as those related to scattering
and tangling. The extended framework supports the
characterization of features according to different
perspectives, including size, crosscutting behavior,
granularity, and static location in the code. The
combined analysis of these different perspectives
allowed us to understand and to characterize the
features extracted in ArgoUML-SPL. This knowledge
is documented in Section III and IV to allow further
replications of our study by different research groups.

As future work, we have plans to refactor other features.
By making the current version of the system publicly
available, we aim to motivate researchers to contribute to
its extension. We also have plans to investigate the refac-
toring of ArgoUML-SPL features to other programming
paradigms, such aspect-oriented programming, feature-
orientated programming, and disciplined annotations. Ac-
tually, as stated in Section II, preprocessor directives have
been selected as the first technology to extract features in
our product line exactly with this objective, i.e., to pro-
vide a baseline for comparison with other modularization
techniques.

Finally, the manual annotation of features, using
#ifdef and #endif, has demonstrated to be a tedious
and repetitive task. Therefore, we intend to investigate the
use of automatic techniques and tools to extract features.

ACKNOWLEDGMENT

This research has been supported by grants from
FAPEMIG and CNPq.

REFERENCES

[1] P. Clements and L. M. Northrop, Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

[2] V. Sugumaran, S. Park, and K. C. Kang, “Introduction to
the special issue on software product line engineering,”
Communications ACM, vol. 49, no. 12, pp. 28-32, 2006.

[3] D. L. Parnas, “On the design and development of program
families,” IEEE Transactions on Software Engineering,
vol. 2, no. 1, pp. 1-9, 1976.

[4] R.Lopez-Herrejon, D. Batory, and W. R. Cook, “Evaluating
support for features in advanced modularization technolo-
gies,” in 19th European Conference on Object-Oriented
Programming (ECOOP), ser. LNCS, vol. 3586. Springer-
Verlag, 2005, pp. 169-194.

[5] R. E. Lopez-Herrejon and D. S. Batory, “A standard prob-
lem for evaluating product-line methodologies,” in Third
International Conference on Generative and Component-
Based Software Engineering (GPCE), ser. LNCS, vol.
2186. Springer-Verlag, 2001, pp. 10-24.



(6]

(71

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

(20]

E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro,
U. Kulesza, A. Garcia, S. Soares, F. C. Ferrari, S. S. Khan,
F. C. Filho, and F. Dantas, “Evolving software product lines
with aspects: an empirical study on design stability,” in 30th
International Conference on Software Engineering (ICSE),
2008, pp. 261-270.

F. DeRemer and H. Kron, “Programming-in-the large ver-
sus programming-in-the-small,” in International Confer-
ence on Reliable software, 1975, pp. 114-121.

E. P. Brooks, The mythical man-month (anniversary ed.).
Addison-Wesley, 1995.

L. Tolke, M. Klink, and M. van der Wulp, “ArgoUML
cookbook,” 2010, http://argouml.tigris.org/wiki/Cookbook.

J. E. Robbins and D. F. Redmiles, “Cognitive support,
UML adherence, and XMI interchange in ArgoUML,”
Information & Software Technology, vol. 42, no. 2, pp. 79—
89, 2000.

H. Spencer, “#ifdef considered harmful, or portability ex-
perience with C News,” in USENIX Conference, 1992, pp.
185-197.

B. Adams, W. D. Meuter, H. Tromp, and A. E. Hassan,
“Can we refactor conditional compilation into aspects?” in
8th International Conference on Aspect-Oriented Software
Development (AOSD), 2009, pp. 243-254.

S. Apel and C. Kistner, “Virtual separation of concerns
- a second chance for preprocessors,” Journal of Object
Technology, vol. 8, no. 6, pp. 5978, 2009.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-oriented
programming,” in I1th European Conference on Object-
Oriented Programming (ECOOP), ser. LNCS, vol. 1241.
Springer Verlag, 1997, pp. 220-242.

J. Liu, D. Batory, and C. Lengauer, “Feature oriented
refactoring of legacy applications,” in 28th International
Conference on Software Engineering (ICSE), 2006, pp.
112-121.

J. Liebig, S. Apel, C. Lengauer, C. Kistner, and M. Schulze,
“An analysis of the variability in forty preprocessor-based
software product lines,” in 32nd International Conference
on Software Engineering (ICSE), 2010.

M. Fowler and K. Scott, UML distilled. Addison-Wesley,
2000.

C. Kistner, S. Apel, and M. Kuhlemann, “Granularity
in software product lines,” in ICSE ’08: Proceedings of
the 30th international conference on Software engineering.
New York, NY, USA: ACM, 2008, pp. 311-320.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold, “An overview of Aspect],” in 15th
European Conference on Object-Oriented Programming
(ECOOP), ser. LNCS, vol. 2072. Springer Verlag, 2001,
pp- 327-355.

M. Nassau and M. T. Valente, “Object-oriented transfor-
mations for extracting aspects,” Information and Software
Technology, vol. 51, no. 1, pp. 138-149, 2009.

[21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

M. Nassau, S. Oliveira, and M. T. Valente, “Guidelines
for enabling the extraction of aspects from existing object-
oriented code,” Journal of Object Technology, vol. 8, no. 3,
pp. 1-19, 2009.

D. Binkley, M. Ceccato, M. Harman, F. Ricca, and
P. Tonella, “Tool-supported refactoring of existing object-
oriented code into aspects.” [EEE Transactions Software
Engineering, vol. 32, no. 9, pp. 698-717, 2006.

S. Ducasse, T. Girba, and A. Kuhn, “Distribution map,”
in International Conference on Software Maintenance
(ICSM), 2006, pp. 203-212.

M. Eaddy, T. Zimmermann, K. D. Sherwood, V. Garg, G. C.
Murphy, N. Nagappan, and A. V. Aho, “Do crosscutting
concerns cause defects?” IEEE Transactions on Software
Engineering, vol. 34, no. 4, pp. 497-515, 2008.

E. Figueiredo, B. C. da Silva, C. Sant’Anna, A. F. Garcia,
J. Whittle, and D. J. Nunes, “Crosscutting patterns and
design stability: An exploratory analysis,” in International
Conference on Program Comprehension (ICPC), 2009, pp.
138-147.

M. Mezini and K. Ostermann, “Conquering aspects with
Caesar,” in 2nd International conference on Aspect-oriented
Software Development (AOSD), 2003, pp. 90-99.

M. T. Valente, C. Couto, J. Faria, and S. Soares, “On the
benefits of quantification in Aspect] systems,” Journal of
the Brazilian Computer Society, vol. 16, no. 2, pp. 133—
146, 2010.

R. E. Filman and D. P. Friedman, “Aspect-oriented pro-
gramming is quantification and obliviousness,” in OOSPLA
Workshop on Advanced Separation of Concerns, Oct. 2000.

C. Kistner, S. Apel, and D. Batory, “A case study im-
plementing features using Aspect],” in /1th International
Software Product Line Conference (SPLC), 2007, pp. 223—
232.

Software Product Line Conference, “Product line hall of
fame,” 2010, http://splc.net.

P. Mohagheghi and R. Conradi, “An empirical investigation
of software reuse benefits in a large telecom product,”
ACM Transactions on Software Engineering Methodology,
vol. 17, no. 3, pp. 1-31, 2008.



